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Abstract. Music is a form of expression. Since machines have limited 
capabilities in this sense, our main goal is to model musical composition 
process, to allow machines to express themselves musically. Our model is 
based on a linguistic approach. It describes music as a language composed of 
sequences of symbols that form melodies, with lexical symbols being sounds 
and silences with their duration in time. We determine functions to describe the 
probability distribution of these sequences of musical notes and use them for 
automatic music generation. 

Keywords: Affective computing, evolutionary systems, evolutionary matrix, 
generative music, generative grammars. 

1 Introduction 

Machine emotional intelligence is part of the objectives of affective computing 
research [20]. Music is one of the fine arts and represents a form of expression. A 
desirable feature for machines is that they could express musically since they do not 
yet have this ability [2]. The problem is how to teach machines to compose music. 

Computers represent a musical instrument capable of generating a number of 
sounds. Development of computational models applied to humanistic branches as fine 
arts, especially music, has its results in generative music, music generated from 
algorithms. Different models have been applied in development of automatic music 
composers, for example, those ones based on neural networks [11], on genetic 
algorithms [21], on swarms [4], etc., resulting in a wide range of applications  

Our work is to characterize music and find its patterns so it can be explained in 
terms of algorithms to model the process of musical composition. A notes’ sequence 
has certain probability of appearing in a melody. There are certain sequences that 
occur more regularly that forms characteristic patterns for each musical composition. 
The likelihood for these patterns to appear is used by our algorithm to generate a 
musical composition automatically. 



It is possible to develop computational tools to automate composition process 
using our model. The following are possible applications of such systems: 

– Have a personal music composer. 
– Create new music styles by finding different patterns styles and mixing them. 
– Help people without musical knowledge to compose music.  Providing tools to 

allow users edit generated compositions, resulting user’s composition. 
– Enable computers to have the capacity to carry out a process until now reserved 

for humans. Making this, machines will get human characteristics creating 
another way of human-machine communication. 

– Offer another alternative for creation of music; as a consequence, other 
alternatives of music are possible to be listened.  

– Have machinery for the generation of live music for restaurants, offices, shops, 
etc. with compositions created in real time by indefatigable musicians. 

– Provide tools to allow children from a very young age to have direct contact with 
musical composition process, which stimulates their minds for better 
performance in human activities. 

This paper is organized as follows. In Section 2 we describe different algorithms to 
develop the same task we do. In Section 3 we explain our system. In Section 4 we 
present some results and a discussion about how we can improve our model. Section 5 
is the future work we endeavor to accomplish. Then we present some conclusions.  

2 Related Work 

The works [19] and [12] provide a comprehensive study of different methods that 
have been used to develop music composition systems based on: noise [5], 
knowledge, cellular automata, grammars [18], evolutionary methods, fractals, genetic 
algorithms [1], case based reasoning [14], agents [16] and neural networks [6, 11]. 
Some systems are called hybrid since they combine several of these techniques. 

For example, Harmonet [11] is a system based on connectionist networks, which 
has been trained to produce coral style of J. S. Bach. It focuses on the essence of 
musical information, rather than restrictions on music structure. The authors of [6] 
believe that music composed by recurrent neural networks lacks structure, as they do 
not maintain memory of distant events, and developed a model based on LSTM (Long 
Short Term Memory) to represent the overall and local music structure, generating 
blues compositions. 

The work [13] describes a system for automatic music genre recognition based on 
signal’s audio content, focusing only on melodies of three music genres: classical, 
metal and dance. The work [3] presents a system to recognize through the contents of 
a music database, which includes audio files (MIDI), with the idea to make search 
based on music contours, i.e. in a relative changes representation in a melody 
frequencies, regardless of tone or time. 

There is a number of works based on evolutionary ideas for music composition. 
For example, [18] used generative context-free grammars for modeling the melody, 
through genetic algorithms making grammar evolve to improve the melody and 
produce a composition. GenJam [1] is a system based on a genetic algorithm that 



models a novice jazz musician learning to improvise. Musical phrases are generated at 
random and user feedbacks the system, generating new compositions improving 
through several generations. In [21] a genetic algorithm with coevolution, learning 
and rules is used in a music composer system. In it, male individuals produce music 
and female critics evaluate it to mate with suitable males creating new melodies 
generations. 

3 Music Composer  

A melody is a structure made up of other structures built over time. These structures 
are notes sequences. How many times a musical note is used after another reflects 
patterns of notes’ sequences in a melody. A personal characteristic of each author is 
the use of certain notes’ patterns with more regularity. We focus on finding these 
patterns over monophonic music to characterize it probabilistically. 

Our model is built based on a linguistic approach [8]. It describes music as a 
language composed of sequences of symbols, which lexical items are sounds and 
silences throughout time. Each melody is made of phrases of this language. Notes of a 
melody represent sounds or silences. Sequences of notes form phrases of sounds. 

ComposerMental

Interpretative Interpreter
Expressiveness
(time, frequency)

Auditory Listener

Grammar
(sad, happy)

 
Fig. 1. Model of Music Process 

Music process involves three main levels, mental, interpretative and auditory [15]. 
The process of musical composition is a mental process that involves the conception 
of an idea to be expressed in sounds and silences. The result of composition process is 
a musical composition and can be shaped in a score or in a sound file. In our model 
the language that represents the score is represented by a grammar. The performer 
turns the musical work into sound, adding his personal traits of expressiveness. The 
sound reaches the audience who gives meaning to the music according to how is 
perceived. Our model focuses on the mental level, see Fig. 1. 

To model the process of musical composition we rely on the concept of 
evolutionary systems [7], which states that systems evolve as a result of constant 
change caused by the flow of matter, energy and information [9]. Evolutionary 
systems interrelate with their environment finding rules to describe phenomena, they 
use functions that allow them to learn and adapt to changes that come before them.  
These rules can be expressed in the form of grammars. A generative grammar G (Vn, 
Vt, S, R), where Vn is the set of non-terminal symbols, Vt is the set of terminal 



symbols or alphabet, which are the musical notes, the initial symbol S and a set of 
rules R. 

Each genre, style and musical author has its own rules of composition. Not all rules 
are described in music theory. So to make automatic music composition we use an 
evolutionary system to find the rules that determine the form of each melody in 
unsupervised manner. The scheme of our model is shown in Fig. 2. 
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Fig. 2. Scheme of our model 

A characteristic of our model is the ability to learn from examples of music mi. 
From each example probabilistic grammars Gi are generated to describe patterns that 
characterize musical expressiveness of each melody. These learned rules are used to 
generate melody mi+1 automatically. The function R called recognizer generates 
production rules of grammar G from each musical melody, thereby creating an image 
of reality in musical terms. 

R(mi) = G 

It is possible to construct a function C(G). C is called a musical composer and uses 
G, a generative grammar to produce a novel melody m. 

C(G) = m 

In this paper we are dealing with Composer and Recognizer Functions. To hear the 
music composition it must exist a function I called musical interpreter or performer 
that generates the sound of melody m. I recognize the lexical-semantic symbols of G 
that make the expressiveness of melody m.  

I(m) = sound 

3.1 R Function Recognizer: Music Learning Module 

Our model is modified according to each new melody. For every melody a musical 
language is generated that represents it. This is equivalent to generate a different 
automaton or a new compiler. Each example makes the model to restructure and to 
adapt to changes getting more musical knowledge. 

We are working with melodies, monophonic music, modeling frequencies and 
times of notes, the two more important variables of expressivity in music. Each of 
these variables forms a sequence along the melody. We construct a probability 
function for each sequence using a matrix. This matrix can be transformed into a 



probabilistic grammar. In 3.3 Matrix and Grammar we explain and algorithm to make 
this transformation.  

We are going to explain how the frequency matrix works. Time’s matrix works the 
same way. For example, Fig. 3 is a frequencies sequence of a melody. Where Vt={b, 
d#, e, f#, g, a, b2, d2, e2, g2} are the terminal symbols or alphabet of this melody. Each 
of these symbols of the alphabet corresponds to each note in a chromatic scale: A, A#, 
B, C, C#, D, D#, E, F, F#, G, G#. 

El cóndor pasa (Peruvian song) 
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e  
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e 
b2 e2 d2 e2 d2 e2 g2 e2 d2 e2 d2 b2 g e2 d2 e2 d2 
e2 g2 e2 d2 e2 d2 b2 a g e g e 
 

Fig. 3. Example of a monophonic melody 

Let Notes[n] to be an array in which are stored the numbers corresponding to 
melody notes. Where n is the index which refers to each array element. Let Mi,j be a 
matrix with i rows and j columns. Fig. 4 shows the learning algorithm we use to 
generate frequency distribution matrix of Fig. 5. 

for each i ∈ Notes[n], j ∈ Notes[n+1] do 
 Mi,j = Mi,j + 1 

Fig. 4. Learning algorithm 

We use a matrix of 60 rows and 60 columns representing 5 musical octaves to store 
frequency’s sequences. 5 musical octaves are 60 chromatic notes. Frequencies 
matrix’s tags of rows and columns are the notes (a, a#, b, c, c#, d, d#, e, f, f# g, g#, a2, 
a2#,…,g5, g5#). A matrix of 7 rows and 7 columns is used to store time’s sequences 
corresponding to whole note (semibreve), half note (minim), quarter note (crotchet), 
eighth note (quaver), sixteenth note (semiquaver), thirty-second note 
(demisemiquaver) and sixty-fourth note (hemidemisemiquaver). 

 
Fig. 5. Frequency distribution matrix 



Each number stored in frequency matrix represents how many times a row note 
was followed by a column note. An S row should be added to store the first note of 
each melody. S represents the axiom or initial symbol. Fig. 5 shows frequency 
distribution matrix after applying the learning algorithm to melody of Fig. 3. Matrix 
of Fig. 5 only nonzero contains columns and rows. 

 
Fig. 6. Frequency distribution of e note 

Rows of matrix of Fig. 5 represent frequency distribution of each note. In Fig. 6 we 
show as example the frequency distribution of e row. How many times a note is 
followed by another note can be used to calculate its probability distribution.  

3.2 C Function Composer: Music Generator Module  

C (Composer) function generates a note sequence based on probabilities determined 
from frequency distribution matrix. From each note is possible to go only to certain 
notes according to frequency distribution for each note. The most probable notes form 
characteristic musical patterns. 

To determine the probability that a note follows another note, we need to determine 
the cumulative sum of each matrix row of Fig. 5. Let Mi,j to be a matrix, with i rows 
and j columns. We calculate the cumulative sum for each i row such that Mi,j ≠ 0. The 
partial i row sum is stored in each non-zero cell. We add a column T where the total 
cumulative sum for each row i is stored.  

for each i ∈ M do 
 for each j ∈ M do 
  Ti = Ti + Mi,j 

Mi,j = Ti   for each Mi,j ≠ 0 

Fig. 7. Cumulative frequency distribution algorithm 

With each new melody mi matrix Mi,j is modified. This means that world’s 
representation of our model has changed. It has more music knowledge. Fig. 8 is 
cumulative frequency distribution matrix after applying cumulative frequency 
distribution algorithm Fig. 7 to frequency distribution matrix Fig. 5. 

For music generation is necessary to decide next note of the melody. To take this 
decision a human composer bases in his musical knowledge. In our model this 
decision is made based on the cumulative frequency distribution matrix using the note 
generator algorithm Fig. 9.  



 
Fig. 8. Cumulative frequency distribution matrix 

For example let us generate a melody based on matrix of Fig. 8. Music generation 
begins choosing the first composition note. We choose one of possible beginning 
notes, that is, notes which are first notes of melodies examples. S row of matrix of 
Fig. 8 contains all beginning notes. In our example, applying note generator algorithm 
Fig. 9 there is only one possible note to choose. This first note represents an i row of 
Mi,j which we use to determine the next note. The same happens with second note. 
Only e note can be chosen from the first note b. 

while(not end) 
 p=random(Ti) 

 while(Mi,j < p) 
  j++ 
  new_note = j 
  i=j 

Fig. 9. Note generator algorithm  

The first two notes of this new melody are mi+1 = {b, e}. Applying the note 
generator algorithm to determine the third note: We take the value of column Te = 9. 
A p random number between zero and 9 is generated, p = 6. To find next note we 
compare p random number with each non-zero value of the E row until one greater 
than or equal to this number is found. Then column g is this next note since Me,g = 8 is 
greater than p=6. The column j=g is where it is stored this number that indicates the 
following composition note and the i following row to be processed. The third note of 
new melody mi+1 is g. So mi+1 = {b, e, g,…}. Then to determine the fourth note we 
must apply the note generator algorithm to i = g row.  

Since each non-zero value of i represents notes that were used to follow the i note, 
then can use them to generate patterns found in melodies examples. Generated music 
reflects these patterns learned from music examples. 

 While the system generates a musical composition with each note it modifies 
itself, increasing the likelihood for that note to be generated again. This is another 
way the system evolves. Besides we added a forgetting mechanism to ensure that the 
values do not overflow, which causes the notes played the least, lesser probability to 
be played again even they are not forgotten.  



3.3 Matrix and Grammar 

There are different ways to obtain a generative grammar G. A particular unsupervised 
case is an evolutionary matrix [10]. The algorithms described in Figs. 4, 7 and 9 of 
functions R and C represent an evolutionary matrix. An evolutionary matrix is a way 
of knowledge representation. From frequency distribution matrix and the T total 
column Fig. 8 is possible to generate a probabilistic generative grammar. 

 for each i ∈ M do 
  for each j ∈ M do 
   if  Mi,j ≠ 0 
    Mi,j= Mi,j / Ti 

Fig. 10. Probability algorithm 

To apply the algorithm, we need to determine probability matrix from frequency 
distribution matrix of Fig. 8. Probability matrix is calculated with the probability 
algorithm of Fig. 10.  

 
Fig. 11. Probability matrix 

Exist a grammar G{Vn, Vt, S, R} such that G can be generated from M, where M is 
the probability matrix Fig. 11. Vn is the set of no-terminals symbols, Vt is the set of all 
terminal symbols or alphabet; in this particular case the alphabet represents melody’s 
notes. S is the axiom or initial symbol and R is the set of rules generated. To 
transform matrix of Fig. 11 into grammar of Fig. 13 we use the following algorithm:  

– We substitute each tag row of M with a no-terminal symbol of grammar G, 
Fig. 12.  

– Each column tag must be substituted by its note and its non-terminal symbol, 
Fig. 12.  

– For each i row and each j column such that Mi,j ≠ 0, j column represents a 
terminal symbol and a Xn no-terminal symbol with probability p = Mi,j / Ti to 
occur. Then rules are of the form Vn → Vt Vn(p). 

In this way the grammar is G{Vn,Vt, S, R}. Vn={S, X1, X2 X3, X4, X5, X6, X7, X8, 
X9, X10} is the set of no-terminals symbols. Vt={b, d#, e, f#, g, a, b2, d2, e2, g2} is the 
set of all terminal symbols or alphabet. S is the axiom or initial symbol. Rules R are 
listed in Fig. 13. 



 
Fig. 12. Transition matrix 

S    → b X1(1) 
X1  → e X2(1) 
X2  → e X3(1) 
X3  → b X1(1/9) | d# X2(2/9)| f# X4(2/9) | g X5(3/9) | b2 X7(1/9) 
X4  → g X5(1) 
X5  → e X3(6/11) | f# X4(2/11) | a X6(2/11) | e2 X9(1/11) 
X6  → g X5(3/5) | b2 X7(2/5) 
X7  → g X5(1/9) | a X6(3/9) | d2 X8(2/9) | e2 X9(3/9) 
X8  → b2 X7(6/12) | g2 X10(6/12) 
X9  → d2 X8(10/12) | g2 X10(2/12) 
X10 → e2 X9(1) 

Fig. 13. Probabilistic generative grammar 

4 Results and discussion  

Examples of music generated by our system can be found at www.olincuicatl.com. 
To evaluate whether our algorithm is generating music or not, we decided to 

conduct a Turing-like test. 26 participants of the test had to tell us if they like music 
generated by our model, knowing anything about that but it was automatically music 
generated.  

We compiled 10 melodies, 5 of them generated by our model and another 5 by 
human composers and we asked 26 human subjects to rank melodies according to 
whether they liked them or not, with numbers between 1 and 10 being number 1 the 
most they liked. None of subjects knew about the order of music compositions. These 
10 melodies were presented as in table 1. 

Table 1. Order of melodies as they were presented to subjects 

ID Melody Author  ID Melody Author 
A Zanya         (generated)  F Dali                         Astrix 
B Fell    Nathan Fake  G Ritual Cibernetico   (generated) 
C Alucin        (generated)  H Feelin' Electro         Rob Mooney 
D Idiot           James Holden  I Infinito                    (generated) 
E Ciclos        (generated)  J Lost Town               Kraftwerk 



Test results were encouraging: since automatically generated melodies were ranked 
at 3rd and 4th place above human compositions of very famous bands. Table 2 shows 
the ranking of melodies as a result of the Turing-like test we conducted.  

Table 2. Order of melodies obtained after the like Turing test 

ID Ranking Melody Author 
B 1 Fell                         Nathan Fake 
D 2 Idiot                        James Holden 
C 3 Alucín                    (generated) 
A 4 Zanya                     (generated) 
F 5 Dali                        Astrix 
H 6 Feelin' Electro        Rob Mooney 
J 7 Lost Town              Kraftwerk 
E 8 Ciclos                     (generated) 
G 9 Ritual Cibernético  (generated) 
I 10 Infinito                   (generated) 

 
We have obtained novelty results comparable with those obtained by other 

developments [21, 1], modeling frequency and time of a melody with simple 
algorithms. 

To the ears of musicians compositions generated by our system sound similar to 
the used examples. However we are developing other algorithms in order to shape the 
musical structure [17]. We consider if a larger corpus is used the results will 
considerably improve.  

It is necessary to develop more sophisticated forgetting functions to improve the 
method. 

5 Conclusions and Future Work 

We have developed a model for music composition process. A way to represent music 
based on an evolving matrix [10] a paradigm for knowledge representation.  

We developed an algorithm to transform a matrix where we represent music into a 
grammar, what it is a linguistic representation of music.  

Generative music presents new forms that not always match with traditional rules 
of music. This feature is perhaps one of the attractions of these new forms of music 
which breaks with preset patterns. 

Transition patterns are measured statistically to determine the probability of 
moving from one musical note to another. This process can be model with a grammar, 
automata, matrix, etc. We propose a model, regardless of the modeling tool, for 
characterize music composition process.  

In our future work we will characterize different types of music, from sad to happy, 
from classic to electronic in order to determine functions for generating any kind of 
music.    

We are currently developing systems to improve using matrices of 3, 4 or n 
dimensions, which may reflect the many variables involved in a musical work. To 
model more music variables will be reflected in music expression. 



We plan to make matrices evolve into some other matrices to produce music 
morphing. Also, we are interested in develop a polyphonic model. Finally, it is 
necessary to develop better forgetting functions. 
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